Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations

نویسندگان

  • Yana Di
  • Ruo Li
  • Tao Tang
  • Pingwen Zhang
چکیده

This work presents the first effort in designing a moving mesh algorithm to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The main difficulty in developing this moving mesh scheme is how to keep it divergence-free for the velocity field at each time level. The proposed numerical scheme extends a recent moving grid method based on harmonic mapping [R. Li, T. Tang, and P. W. Zhang, J. Comput. Phys., 170 (2001), pp. 562–588], which decouples the PDE solver and the mesh-moving algorithm. This approach requires interpolating the solution on the newly generated mesh. Designing a divergence-free-preserving interpolation algorithm is the first goal of this work. Selecting suitable monitor functions is important and is found challenging for the incompressible flow simulations, which is the second goal of this study. The performance of the moving mesh scheme is tested on the standard periodic double shear layer problem. No spurious vorticity patterns appear when even fairly coarse grids are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction

This paper presents a multiscale/stabilized finite element formulation for the incompressible Navier–Stokes equations written in an Arbitrary Lagrangian–Eulerian (ALE) frame to model flow problems that involve moving and deforming meshes. The new formulation is derived based on the variational multiscale method proposed by Hughes (Comput Methods Appl Mech Eng 127:387–401, 1995) and employed in ...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

Two-Level Stabilized Finite Volume Methods for Stationary Navier-Stokes Equations

We propose two algorithms of two-level methods for resolving the nonlinearity in the stabilized finite volume approximation of the Navier-Stokes equations describing the equilibrium flow of a viscous, incompressible fluid. A macroelement condition is introduced for constructing the local stabilized finite volume element formulation. Moreover the two-level methods consist of solving a small nonl...

متن کامل

The Postprocessed Mixed Finite-Element Method for the Navier-Stokes Equations

A postprocessing technique for mixed finite-element methods for the incompressible Navier–Stokes equations is studied. The technique was earlier developed for spectral and standard finite-element methods for dissipative partial differential equations. The postprocessing amounts to solving a Stokes problem on a finer grid (or higher-order space) once the time integration on the coarser mesh is c...

متن کامل

Convergence of a finite volume scheme for the incompressible fluids

We consider a finite volume scheme for the two-dimensional incompressible Navier-Stokes equations. We use a triangular mesh. The unknowns for the velocity and pressure are respectively piecewise constant and affine. We use a projection method to deal with the incompressibility constraint. The stability of the scheme has been proven in [15]. We infer from it its convergence. Mathematics Subject ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005